Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

U211(tt, IL, M, N) → ACTIVATE(M)
U121(tt, L) → ACTIVATE(L)
U221(tt, IL, M, N) → ACTIVATE(IL)
LENGTH(cons(N, L)) → ACTIVATE(L)
U221(tt, IL, M, N) → U231(tt, activate(IL), activate(M), activate(N))
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
U221(tt, IL, M, N) → ACTIVATE(N)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
U121(tt, L) → LENGTH(activate(L))
U111(tt, L) → U121(tt, activate(L))
U211(tt, IL, M, N) → U221(tt, activate(IL), activate(M), activate(N))
U231(tt, IL, M, N) → ACTIVATE(IL)
U231(tt, IL, M, N) → ACTIVATE(M)
LENGTH(cons(N, L)) → U111(tt, activate(L))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
U211(tt, IL, M, N) → ACTIVATE(N)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
U231(tt, IL, M, N) → ACTIVATE(N)
U221(tt, IL, M, N) → ACTIVATE(M)
U211(tt, IL, M, N) → ACTIVATE(IL)
U111(tt, L) → ACTIVATE(L)
TAKE(s(M), cons(N, IL)) → U211(tt, activate(IL), M, N)
ACTIVATE(n__zeros) → ZEROS

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U211(tt, IL, M, N) → ACTIVATE(M)
U121(tt, L) → ACTIVATE(L)
U221(tt, IL, M, N) → ACTIVATE(IL)
LENGTH(cons(N, L)) → ACTIVATE(L)
U221(tt, IL, M, N) → U231(tt, activate(IL), activate(M), activate(N))
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
U221(tt, IL, M, N) → ACTIVATE(N)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
U121(tt, L) → LENGTH(activate(L))
U111(tt, L) → U121(tt, activate(L))
U211(tt, IL, M, N) → U221(tt, activate(IL), activate(M), activate(N))
U231(tt, IL, M, N) → ACTIVATE(IL)
U231(tt, IL, M, N) → ACTIVATE(M)
LENGTH(cons(N, L)) → U111(tt, activate(L))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
U211(tt, IL, M, N) → ACTIVATE(N)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
U231(tt, IL, M, N) → ACTIVATE(N)
U221(tt, IL, M, N) → ACTIVATE(M)
U211(tt, IL, M, N) → ACTIVATE(IL)
U111(tt, L) → ACTIVATE(L)
TAKE(s(M), cons(N, IL)) → U211(tt, activate(IL), M, N)
ACTIVATE(n__zeros) → ZEROS

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U211(tt, IL, M, N) → ACTIVATE(M)
U221(tt, IL, M, N) → ACTIVATE(IL)
U221(tt, IL, M, N) → U231(tt, activate(IL), activate(M), activate(N))
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
U221(tt, IL, M, N) → ACTIVATE(N)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
U211(tt, IL, M, N) → U221(tt, activate(IL), activate(M), activate(N))
U231(tt, IL, M, N) → ACTIVATE(IL)
U231(tt, IL, M, N) → ACTIVATE(M)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
U211(tt, IL, M, N) → ACTIVATE(N)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
U231(tt, IL, M, N) → ACTIVATE(N)
U221(tt, IL, M, N) → ACTIVATE(M)
U211(tt, IL, M, N) → ACTIVATE(IL)
TAKE(s(M), cons(N, IL)) → U211(tt, activate(IL), M, N)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
TAKE(s(M), cons(N, IL)) → U211(tt, activate(IL), M, N)
The remaining pairs can at least be oriented weakly.

U211(tt, IL, M, N) → ACTIVATE(M)
U221(tt, IL, M, N) → ACTIVATE(IL)
U221(tt, IL, M, N) → U231(tt, activate(IL), activate(M), activate(N))
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
U221(tt, IL, M, N) → ACTIVATE(N)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
U211(tt, IL, M, N) → U221(tt, activate(IL), activate(M), activate(N))
U231(tt, IL, M, N) → ACTIVATE(IL)
U231(tt, IL, M, N) → ACTIVATE(M)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
U211(tt, IL, M, N) → ACTIVATE(N)
U231(tt, IL, M, N) → ACTIVATE(N)
U221(tt, IL, M, N) → ACTIVATE(M)
U211(tt, IL, M, N) → ACTIVATE(IL)
Used ordering: Polynomial interpretation [25,35]:

POL(U23(x1, x2, x3, x4)) = (4)x_2 + (4)x_3 + (2)x_4   
POL(U22(x1, x2, x3, x4)) = (2)x_1 + (4)x_2 + (4)x_3 + (3)x_4   
POL(n__zeros) = 0   
POL(U211(x1, x2, x3, x4)) = (4)x_2 + (4)x_3 + (4)x_4   
POL(activate(x1)) = x_1   
POL(U21(x1, x2, x3, x4)) = (2)x_1 + (4)x_2 + (4)x_3 + (3)x_4   
POL(take(x1, x2)) = (2)x_1 + (2)x_2   
POL(0) = 0   
POL(TAKE(x1, x2)) = (2)x_1 + (2)x_2   
POL(cons(x1, x2)) = (2)x_1 + (2)x_2   
POL(tt) = 4   
POL(U221(x1, x2, x3, x4)) = (4)x_2 + (4)x_3 + (4)x_4   
POL(zeros) = 0   
POL(U231(x1, x2, x3, x4)) = (4)x_2 + (4)x_3 + (4)x_4   
POL(n__take(x1, x2)) = (2)x_1 + (2)x_2   
POL(s(x1)) = 4 + (2)x_1   
POL(ACTIVATE(x1)) = (4)x_1   
POL(nil) = 0   
The value of delta used in the strict ordering is 8.
The following usable rules [17] were oriented:

zerosn__zeros
take(X1, X2) → n__take(X1, X2)
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
activate(X) → X
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
zeroscons(0, n__zeros)
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U211(tt, IL, M, N) → ACTIVATE(M)
U221(tt, IL, M, N) → ACTIVATE(IL)
U221(tt, IL, M, N) → U231(tt, activate(IL), activate(M), activate(N))
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
U221(tt, IL, M, N) → ACTIVATE(N)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
U211(tt, IL, M, N) → U221(tt, activate(IL), activate(M), activate(N))
U231(tt, IL, M, N) → ACTIVATE(IL)
U231(tt, IL, M, N) → ACTIVATE(M)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
U211(tt, IL, M, N) → ACTIVATE(N)
U231(tt, IL, M, N) → ACTIVATE(N)
U221(tt, IL, M, N) → ACTIVATE(M)
U211(tt, IL, M, N) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 12 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
QDP
                    ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(n__take(x1, x2)) = 1 + (4)x_1 + (4)x_2   
POL(ACTIVATE(x1)) = (4)x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

U121(tt, L) → LENGTH(activate(L))
U111(tt, L) → U121(tt, activate(L))
LENGTH(cons(N, L)) → U111(tt, activate(L))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.